

Mapping V4 to Artificial Neurons via Autoencoder allows Decoding Visual Information

Xuming Ran (冉旭明)

ranxuming@gmail.com

BME Department, Southern University of Science and Technology (SUSTech)

Al as a tool to analyze neural / behavioral data

External World (stimuli)

An AI to encode (simulate) neural signals?

10¹² neurons in human brain

Another AI to decode neural signals?

Senses Action Emotion Cognition

What are problems of the end-to-end

- Not possible to record all neurons
- No enough training datasets
- No enough computational power to fit data
- Even though we can do all these, we know nothing from the model.

A good AI in neuroscience shall not only fit the data, but also provide insights to **explain the underlying mechanisms** of how the brain works.

Function of the visual system

The visual system is a part of the <u>central nervous system</u> (CNS) that gives organisms the ability to <u>detect</u>, <u>process</u>, <u>interpret</u> information from <u>visible light</u>, with the goal of building a **representation** of the surrounding environment.

Inverse problem in the visual system

Information presented in brain

Our brain is an inference machine.

The visual system rapidly solve the inverse problem.

Our visual system rapidly solves object recognition task.

Visual system solves the core object recognition task ~ 200ms, robustly and accurately.

Al can also rapidly solve object recognition task.

Is there any similarity between brain and AI?

The answer is yes. Plenty.

The ventral visual pathway in brain: for object recognition

JJ DiCarlo, D Zoccolan, and NC Rust (2012). Neuron

Feature extraction from simple to complex, along the ventral stream

1. Small receptive field vs. small convolutional kernel

A neuron does **not** have to see the whole image to discover the pattern.

Connecting to small region with less parameters

By courtesy of Hung-yi Le¹(李宏毅)

2. Identity-preserving transformation

Invariance to position, pose vs. shared convolutional kernel

3. Invariance to scale and subsampling vs Pooling

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

By courtesy of Hung-yi Le¹(李宏毅)

4. Both the visual system and CNN are layered and hierarchical.

Along the Visual Pathway, feature extraction from simple to complex.

Automatically learn the hidden features in the image

Is there any similarity between the neural representation in brain and AI?

What does the neural population representation mean?

The response pattern of a population of visual neurons (e.g., retinal ganglion cells & V1 neurons) to each image is a point in a very high-dimensional space where each axis is the response level of each neuron.

All possible identity-preserving transformations of an object will form a low-dimensional manifold of points in the population vector space (i.e., a continuous surface).

Highly curved and tangled in early visual areas (LGN, V1) \rightarrow An easy separation of object's manifold in

later visual areas (V4, IT)

Biological neural representation resembles to the artificial neural representation.

Brain score: how well existing models explain the neural data

http://www.brain-score.org/#leaderboard

Rank

Sort by average score							iot	enii	0,1001
Model	# aver	,0 ⁰ ,*	v *	\$2 }≷	JA ×	(1 × pe	nav endir	een, Deng	2005
efficientnet-b0 Tan et al., 2019	.442	.215	.317	.556	.547	.573			(
efficientnet-b6 Tan et al., 2019	.435	.263	.295	.563	.541	.513			
efficientnet-b2 Tan et al., 2019	.434	.213	.317	.569	.547	.526			
efficientnet-b4 Tan et al., 2019	.434	.228	.286	.575	.543	.535			
CORnet-S Kubilius et al., 2018	.417	.294	.242	.581	.423	.545	.747	.747	
vgg-19 Simonyan et al., 2014	.408	.347	.341	.610	.248	.494	.711	.711	
resnet-50-robust Santurkar et al., 2019	.408	.378	.365	.537	.243	.515			
resnet-101_v1 He et al., 2015	.407	.266	.341	.590	.274	.561	.764	.764	
vgg-16 Simonyan et al., 2014	.406	.355	.336	.620	.259	.461	.715	.715	
resnet-152_v1 He et al., 2015	.405	.282	.338	.598	.277	.533	.768	.768	

	Soi	t b	y V	4 s	cor	е	wior	aimo	109-109 ¹ 51
Model	" Shere	9° *	s^ *	S2 *	JA *	(1 × 10	ena engin	e Den	30°
vgg-16 Simonyan et al., 2014	.406	.355	.336	.620	.259	.461	.715	.715	>
vgg-19 Simonyan et al., 2014	.408	.347	.341	.610	.248	.494	.711	.711	
xception Chollet et al., 2016	.384	.245	.306	.610	.249	.508	.790	.790	
densenet-169 Huang et al., 2016	.404	.281	.322	.601	.274	.543	.759	.759	
resnet-50-pytorch He et al., 2015	.399	.289	.317	.600	.259	.528	.752	.752	
resnet-101_v2 He et al., 2015	.404	.274	.332	.599	.263	.555	.774	.774	
resnet50-SIN_IN Geirhos et al., 2019	.404	.282	.324	.599	.276	.541	.746	.746	
densenet-201 Huang et al., 2016	.402	.277	.325	.599	.273	.537	.772	.772	
resnet-152_v1 He et al., 2015	.405	.282	.338	.598	.277	.533	.768	.768	
resnet50-SIN_IN_IN Geirhos et al., 2019	.397	.275	.321	.596	.273	.523	.767	. 767 18	

Dimension of the neural population in VGG-16

Dimension of the neural population in AlexNet

Why we want to find the image to maximize neuronal activity?

David H. Hubel & Torsten N. Wiesel

Nobel Prize for Physiology or Medicine in 1981

How about V4 and IT?

Hubel, D. H. 1982. Nature 299: 515–524.
Hubel, D. H., and Wiesel, T. N. 1959. *J. Physiol.* 148: 574–591.
Hubel, D. H., and Wiesel, T. N. 1962. *J. Physiol.* 160: 106–154.

Hubel, D. H., and Wiesel, T. N. 1968. *J. Physiol.* 195: 215–243.

Bashivan, Science, 2019

1°

Can we ascending dimensions from the low-dimension recorded neurons in brain to high-dimension artificial neurons in ANN?

Please no video recording, since this study is ongoing and not published yet.

Thank you.

Biological neural representation resembles to the artificial neural representation.

A mapping function from V4 to L3

Image presented to monkeys

> ImageNet to pre-train Alexnet

Neural responses in V4 and IT

t-SNE for the firing rate of V4 neurons

t-SNE for the firing rate of IT neurons

Teo 0-224ms

t-SNE for the firing rate of V4 and IT

Autoencoder allows bidirectional transform between V4 and L3

Preliminary results: AlexNet vs Model with V4

.

200

Recognition Performance

Model/Metrics	ACCURAY	AUROC	AUPRC
Alexnet	0.80	0.85	0.78
Model with V4	0.70	0.72	0.68

Preliminary results: image reconstruction

Ground-truth images

Firing rate in biological neurons

Reconstructed images By biological neurons

Take-home message

> Ascending dimension transformation via auto-encoder

Auto-encoder allows the transformation between biological and artificial neural representations.

Generalization

The trained Auto-encoder can be generalized to the unseen images.

> Hybrid AI and brain allows object recognition and image reconstruction

It might drive BCI applications to next stage.

> Al can be a powerful tool for neuroscientists

However, it requires collaborations from multidisciplinary fields, including neuroscience, computer science, cognitive science, and psychology.

Other directions emerging in combining AI and neuroscience

Recurrent circuits in brain

- Jonas Kubilius et al. (2019), Brain-like object recognition with high-performing shallow recurrent ANNs, NeurIPS
- Kohitij Kar et al. (2019), Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior, Nature Neurosci

> Sparsity

- Bryan Tripp (2017), Similarities and differences between stimulus tuning in the inferotemporal visual cortex and convolutional networks, IJCNN
- Qingtian Zhang et al. (2019) A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex, PLoS Comp Bio

> Top-down & bottom-up

• Sarthak Mittal et al. (2020), Learning to combine top-down and bottom-up signals in recurrent neural networks with attention over modules, ICML

Adversarial examples for human and Al

- Ian J. Goodfellow et al. (2015), explaining and harnessing adversarial examples, ICLR
- Gamaleldin F. Elsayed et al. (2018), Adversarial Examples that Fool both Computer Vision and Time-Limited Humans, NeurIPS

Thank you. Any question is welcome.

Let's do something together to understand the brain better.

Table 1: Original Datasets							
Dataset name / class	ImageNet	Monkey seeing	V4 Neuron	IT Neuron			
raining set	10625	70	14000	14000			
Testing set	900	24	4800	4800			

Table 2: ImageNet: 3 Classes of Image.

Dataset / class	Flower	house	monkey	all
Training set	3425	3600	3600	10625
Testing set	300	300	300	900

Table 3: 1	Monkey	seeing:3	Classes	Image
------------	--------	----------	---------	-------

Dataset / class	Flower	house	monkey	all
Training set	10	30	30	70
Testing set	4	10	10	24

Table 4: IT Neuron:3 Classes of Neural Firing Rate

Dataset / class	Flower	house	monkey	all
Training set	4400	8800	8800	14000
Testing set	400	800	800	4800

Table 5: V4 Neuron:3 Classes of Neural Firing Rate

Dataset / class	Flower	house	monkey	all
Training set Testing set	$2000 \\ 800$	$6000 \\ 2000$	$\begin{array}{c} 6000\\ 2000 \end{array}$	$ \begin{array}{r} 14000 \\ 4800 \end{array} $